
Journal Pre-proof

The Open EEGLAB Portal Interface:High-Performance Computing with EEGLAB

Ramón Martínez-Cancino, Arnaud Delorme, Dung Truong, Fiorenzo Artoni, Kenneth
Kreutz-Delgado, Subhashini Sivagnanam, Kenneth Yoshimoto, Amitava Majumdar,
Scott Makeig

PII: S1053-8119(20)30265-2

DOI: https://doi.org/10.1016/j.neuroimage.2020.116778

Reference: YNIMG 116778

To appear in: NeuroImage

Received Date: 25 December 2019

Revised Date: 22 February 2020

Accepted Date: 20 March 2020

Please cite this article as: Martínez-Cancino, R., Delorme, A., Truong, D., Artoni, F., Kreutz-Delgado, K.,
Sivagnanam, S., Yoshimoto, K., Majumdar, A., Makeig, S., The Open EEGLAB Portal Interface:High-
Performance Computing with EEGLAB NeuroImage, https://doi.org/10.1016/j.neuroimage.2020.116778.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Inc.

https://doi.org/10.1016/j.neuroimage.2020.116778
https://doi.org/10.1016/j.neuroimage.2020.116778

1

The Open EEGLAB Portal Interface:
High-Performance Computing with EEGLAB

Ramón Martínez-Cancino1,2, Arnaud Delorme1, Dung Truong1, Fiorenzo Artoni3, Kenneth

Kreutz-Delgado2, Subhashini Sivagnanam3, Kenneth Yoshimoto3,
 Amitava Majumdar4, Scott Makeig1

1 Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of
California San Diego, United States of America
2 Department of Electrical and Computer Engineering, Jacobs School of Engineering, University
of California San Diego, United States of America
3 École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
4 San Diego Supercomputer Center, University of California San Diego, United States of
America

Corresponding author: Ramón Martínez-Cancino
E-mail address: ram033@eng.ucsd.edu
Postal address: UC San Diego, SCCN
 9500 Gilman Drive # 0559
 La Jolla CA 92093-0559

2

1. Abstract

EEGLAB signal processing environment is currently the leading open-source software

for processing electroencephalographic (EEG) data. The Neuroscience Gateway (NSG,

nsgportal.org) is a web and API-based portal allowing users to easily run a variety of

neuroscience-related software on high-performance computing (HPC) resources in the

U.S. XSEDE network. We have reported recently (Delorme et al., 2019) on the Open

EEGLAB Portal expansion of the free NSG services to allow the neuroscience

community to build and run MATLAB pipelines using the EEGLAB tool environment. We

are now releasing an EEGLAB plug-in, nsgportal, that interfaces EEGLAB with NSG

directly from within EEGLAB running on MATLAB on any personal lab computer. The

plug-in features a flexible MATLAB graphical user interface (GUI) that allows users to

easily submit, interact with, and manage NSG jobs, and to retrieve and examine their

results. Command line nsgportal tools supporting these GUI functionalities allow

EEGLAB users and plug-in tool developers to build largely automated functions and

workflows that include optional NSG job submission and processing. Here we present

details on nsgportal implementation and documentation, provide user tutorials on

example applications, and show sample test results comparing computation times using

HPC versus laptop processing.

3

2. Introduction

Despite the explosion in the use and diversification of research and applications using

electroencephalography (EEG), other than one current privately financed project (Alexander et

al., 2017; O’Connor et al., 2017), significant recent brain biomarker discovery initiatives have not

involved EEG-derived measures (Pedroni, Bahreini, & Langer, 2019) . Other neuroimaging

techniques, chiefly MRI and fMRI, are the focus of leading initiatives such as the IMAGEN study

(Schumann et al., 2010), the U.K. Biobank project (Sudlow et al., 2015), the Human

Connectome Project (Van Essen et al., 2012), the Autism Brain Imaging Data Exchange (Di

Martino et al., 2014) and the Alzheimer's Disease Neuroimaging Initiative (ADNI) (Mueller et al.,

2005). Three major factors are hindering the large-scale data collection, analysis, and meta-

analysis of EEG data.

Physiologic and experimental variability. The first factor is the native high inter-subject signal

variability in EEG signals themselves. Brain anatomic and physiological (as well as cognitive

and behavioral) differences between individuals, produce differences in their EEG signals that

may severely affect the performance of models and preprocessing techniques meant to

generalize across many subjects (Pedroni et al., 2019). Circumventing issues arising from this

variability requires major efforts both in data standardization and in data analysis (Bigdely-

Shamlo, Makeig, & Robbins, 2016; Bigdely-Shamlo, Mullen, Kothe, Su, & Robbins, 2015;

Gabard-Durnam, Mendez Leal, Wilkinson, & Levin, 2018; Pedroni et al., 2019). Differences in

number and placement of the recording electrodes across studies, and difficulty in co-registering

the electrode positions to the head and underlying functional EEG brain sources add further

complexity.

Format variability and lack of specificity. A second factor hindering development of large

scale EEG data analysis and meta-analysis is the lack of agreement within researchers and

system manufacturer communities regarding EEG data formats. Lack of standardization in this

area has negatively impacted the growth of EEG data sharing. Inconsistent and often

insufficient documentation of data collection and analysis procedures have made it difficult to

reproduce results across laboratories and limited the possibility of bringing together data

recorded in different formats using varying experimental paradigms and recording systems and

parameters.

4

The Brain Imaging Data Structure (BIDS) specification initiative is attempting to establish a

common set of standards for, first, MRI and fMRI (Gorgolewski et al., 2016) and most recently

MEG (Niso et al., 2018), iEEG (Holdgraf et al., 2019), and EEG (Holdgraf et al., 2018) data. The

emerging BIDS standards are sets of interrelated research community-developed specifications

for organizing, archiving, sharing, and easily analyzing brain imaging data collected within and

across studies and laboratories. The new BIDS standards, now being rapidly adopted by

neuroinformatics projects in the US and in Europe, address the issue of heterogeneity in the

structure of archived data across studies. Importantly for EEG data, the root BIDS standard

supports the Hierarchical Event Descriptor (HED) system for annotating the precise nature of

experimental events recorded in the data (Bigdely-Shamlo, Cockfield, et al., 2016), thereby

promoting greater depth of detail and improved consistency across labs in the descriptions of

experimental events recorded in the data.

Need for high-performance computing. A third factor hindering the development of large-

scale EEG analysis is that, given the success of applications of machine learning methods to

very large data archives in an increasing number of fields, and the relatively large amount of

EEG data that could potentially be made available for such analyses, there is an increasing

need for using high-performance computing (HPC) resources. However, there are few readily

available tools for solving difficult EEG signal processing problems such as EEG source

localization using realistic electrical head models (Akalin Acar & Makeig, 2010; Brunet, Murray,

& Michel, 2011; Wolters, Kuhn, Anwander, & Reitzinger, 2002); time-frequency (for example, (S

Makeig et al., 2002; Onton, Delorme, & Makeig, 2005; Pfurtscheller & Da Silva, 1999)) and

cross-frequency coupling analysis (Canolty & Knight, 2010; Martínez-Cancino et al., 2019; Tort,

Komorowski, Eichenbaum, & Kopell, 2010); stochastic analyses including independent

component analysis (ICA) (Artoni, Menicucci, Delorme, Makeig, & Micera, 2014; Scott Makeig,

Jung, Bell, Ghahremani, & Sejnowski, 1997); and a growing variety of machine learning

methods (see examples in (Lotte et al., 2018; Scott Makeig et al., 2012)). Thus, for many EEG

researchers lack of access to sufficient well-documented and formatted data, readily applicable

analysis tools, and connected computing resources are major current obstacles to applying new

large-scale analysis and meta-analysis methods to EEG and related data

HPC science gateways. Publicly available high-performance computing (HPC) resources do

exist at national academic supercomputer centers, but access by neuroscientists to these

5

resources is limited by both administrative and technical barriers including the steep learning

curve required to understand HPC hardware, software, usage policies, user environments and

to install and run applications on HPC resources (Delorme et al., 2019). These obstacles are

being partially eliminated through the creation of science gateways to publicly-funded HPC

resources (Wilkins-Diehr, Gannon, Klimeck, Oster, & Pamidighantam, 2008). Each science

gateway provides a customized set of compute-intensive applications to researchers in a

specific scientific field, making them available for use via a simple to use web portal and/or an

application programming interface (API). These gateways allow scientists to access HPC

resources without dealing with the complexities associated with the machine environment. A

gateway has been developed for the neuroscience community, the Neuroscience Gateway

(Sivagnanam et al., 2013; Sivagnanam, Yoshimoto, Carnevale, & Majumdar, 2018). Here we

present a solution linking the most widely used signal processing environment for EEG

research, EEGLAB (Delorme & Makeig, 2004), to the U.S. HPC Extreme Science and

Engineering Discovery Environment (XSEDE) computer network (xsede.org) via the

Neuroscience Gateway (NSG).

The Neuroscience Gateway (NSG) (Sivagnanam et al., 2018) is a National Science

Foundation (NSF) funded project focused on providing HPC resources to neuroscience

researchers. In doing so, NSG aims to lower or eliminate the administrative and technical

barriers that currently make it difficult for investigators to use these resources. The NSG

(nsgportal.org) gateway offers free computer time to neuroscientists on the XSEDE computer

network, providing a ready means to use HPC resources for popular neuroscience tools,

pipelines, data processing, and software including NEURON (Hines & Carnevale, 2008),

GENESIS (Bower & Beeman, 2012), MOOSE (Ray, Deshpande, Dudani, & Bhalla, 2008),

NEST (Gewaltig & Diesmann, 2007), Brian (Goodman & Brette, 2009) and PyNN (Davison et

al., 2009), as well as software for analyzing and visualizing structural and functional brain

imaging data, such as Freesurfer (Fischl, 2012) and MRtrix (Tournier, Calamante, & Connelly,

2012). NSG leverages access to resources including the supercomputers Comet at the

University of California San Diego and Stampede2 at University of Texas Austin, and the

Jetstream cloud resource at the University of Indiana.

The EEGLAB signal processing environment. Resources for analyzing EEG data are

increasingly freely available as open-source software. Leading examples are the EEGLAB

(Delorme & Makeig, 2004), Fieldtrip (Oostenveld, Fries, Maris, & Schoffelen, 2011), Brainstorm

6

(Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011), and MNE (Gramfort et al., 2014) tool

environments. In 2011, EEGLAB was reported to be the most widely used by the cognitive

neuroscience community (Hanke & Halchenko, 2011), a report consistent with counts of more

recent research publications reporting the use of these respective environments (see Inline

Supplementary Figure 1). EEGLAB (Delorme & Makeig, 2004), first introduced in 2002

organizing tools first released by Makeig and colleagues at the Salk Institute in 1997, comprises

a large set of tools for performing ICA decomposition, time/frequency analysis, and effective

source-level (or scalp channel-level) data visualization. EEGLAB combines a simple but

powerful graphical user interface (GUI) for data exploration with an easy transition to command

line scripting for custom analysis, exploiting the richness of the MATLAB environment (The

Mathworks, Inc., Natick, Massachusetts, United States) on which it runs. EEGLAB is also

compatible with the open source, cross-platform Octave application, and is readily extensible

through its increasing library of more than 100 plug-in extensions contributed by many

laboratories, extensions that appear as easy-to-launch items in the EEGLAB window menu of

users who download them. These plug-ins can take advantage of the wide range of easily

accessible core MATLAB graphics and other libraries.

Using EEGLAB on high-performance computing resources. In a recent publication

(Delorme et al., 2019), we introduced the Open EEGLAB Portal (OEP) software framework

enabling interaction between EEGLAB and the Neuroscience Gateway (NSG, nsgportal.org) to

offer free use of the high-performance computing (HPC) resources of the U.S. XSEDE network

for analysis of EEG and related data from the EEGLAB environment. The OEP makes use of

NSG to provide ready access to HPC resources without the burden of complications typically

associated with using HPC services.

Earlier, in (Delorme et al., 2019), we previewed the EEGLAB functions supporting the

OEP and discussed future development, e.g., a programmatic user interface from EEGLAB to

NSG. Here, we introduce the EEGLAB plug-in, nsgportal (github.com/sccn/nsgportal) that fulfills

this purpose -- to give cognitive neuroscientists free and easy access to HPC resources from an

EEGLAB session running on any lab or personal computer running MATLAB1. The current

manuscript is organized as follows: In Section 3, we expand on the structure and capabilities of

the OEP, ways of accessing it and the characteristics and structure of the computational jobs. In

Section 4, we introduce the nsgportal plug-in and discuss its architecture, its GUI structure, and

1 Currently, nsgportal functions cannot be run using Octave.

7

its set of MATLAB command line tools. In Section 5, we present three nsgportal applications,

the first illustrating the use of the nsgportal GUI, the second its MATLAB command line tools,

and the third showing use of these tools to incorporate HPC access into new or existing

EEGLAB plug-ins, culminating with building nsgportal capabilities into the compute-intensive

RELICA (for ‘RELiable ICA’) plug-in of Artoni et al. (Artoni et al., 2014). Finally, in Sections 6

and 7, we outline current and future developments and present conclusions from our work to

date.

3. The Open EEGLAB Portal

3.1. NSG and Open EEGLAB Portal structure and capabilities.

The Neuroscience Gateway software is based on the Workbench Framework (WF) (Miller,

Pfeiffer, & Schwartz, 2010, Miller, 2011 #23), a software development kit designed to deploy

analytical jobs and database searches to a generic set of computational resources and

databases. The WF has been used in building successful science gateways such as the

CIPRES phylogenetic gateways (Miller et al., 2010) and the Portal for Petascale Life science

Applications and Research (PoPLAR) gateway (Rekapalli, Giblock, & Reardon, 2013). Among

these, CIPRES is the most successful gateway, handling about 40,000 unique users over a

period of ten years (2009 - 2019). This speaks of the maturity of the WF. To create NSG, the

CIPRES-WF was modified to hide all the complexities associated with accessing and using

HPC resources for various neuroscience tools made optimally available on HPC resources (for

more detail, see (Sivagnanam et al., 2015)).

8

Figure 1. High-level overview of the Open EEGLAB Portal (OEP) workflow. The OEP architecture

has three main components: The EEGLAB user local computer resource (in blue), the Neuroscience

Gateway (NSG) (in orange), and the NSG back-end HPC resources (in green). NSG can be accessed via

the NSG web interface or through the NSG applications programming interface (API) operating in the

Representational State Transfer (REST) environment (Miller et al., 2015). The EEGLAB plug-in nsgportal

exploits the latter access point to provide seamless cross-communication between an EEGLAB session

and NSG. Once jobs are submitted to NSG, scripts to execute and data to operate on are deployed to the

back-end HPC resources for processing (red arrow). Once job processing is finished, the NSG working

directory is first returned to the NSG server (green arrow) and then compressed. Following, the user is

notified of the job completion via email. Status of jobs submitted directly from EEGLAB using the API-

based nsgportal tools can also be monitored using plug-in tools and features. The results from the

computation can be retrieved manually via the NSG web interface, or automatically through the nsgportal

plug-in GUI running within the same or a new EEGLAB session.

The Open EEGLAB Portal (OEP) is built upon the NSG framework, making use of its well-

established and tested features, e.g., user interface, account management system,

documentation, a ticketing system for bug reports and resolution, a mechanism for user support

as well as policies to equitably distribute HPC time. Figure 1 (above) presents an overview of

OEP workflow. The OEP architecture connects three main components: The user’s local

computer, the NSG gateway interface, and the NSG backend HPC resources. NSG resources

may be engaged either through the NSG web interface (nsgportal.org) or through its API, NSG-

R, operating in the Representational State Transfer (REST) environment. Here we focus on the

interface between EEGLAB and NSG-R through the NSG REST API.

3.2. Registering EEGLAB as an NSG application

To use NSG-R, the EEGLAB toolbox itself has been registered to use NSG UMBRELLA

authentication, whereby jobs can be submitted to NSG on behalf of multiple registered users.

The EEGLAB NSG identifier and key are specified within the nsgportal authentication function

pop_nsginfo (see Inline Suppl. Figure 2) and should not need to be changed by the user.

3.3. User interaction with the OEP

The first step to using the Open EEGLAB Portal is to create a user NSG account on the NSG

home page (www.nsgportal.org). Obtaining an account first requires providing identity

9

information to allow NSG administrators to verify user authenticity. This information comprises

name, email, responsible principal investigator, and institution. Any researcher associated with a

not-for-profit institution may apply. Receiving an account credential typically requires two days.

Any job submitted to NSG must be in the form of a compressed .zip file of a folder

including raw or pre-processed data files (typically, EEGLAB-formatted), an EEGLAB analysis

script to run on MATLAB (The Mathworks, Inc.), plus any custom MATLAB functions not in the

main EEGLAB distribution and used in the analysis script. Code for built-in MATLAB and

MATLAB toolbox functions, as well as functions in the current EEGLAB release, are already

available via NSG and do not have to be provided in the job file.

The version of EEGLAB available in NSG, always the current stable version, includes

the most popular EEGLAB data processing plug-in extensions as well as all of the current

EEGLAB data import plug-ins. If a toolbox, plug-in, or function used in the job analysis script is

not built-in by default in MATLAB, in the EEGLAB release, or in one of the NSG-installed plug-

ins, the user must include the corresponding files in the job .zip file. (Note: We may add to the

installed NSG base other EEGLAB plug-ins of general interest; please email requests to

eeglab@ucsd.edu).

NSG job submission. User input files can be provided to NSG by using its two main entry ports

(see Fig. 1): (1) The user can upload through the simple NSG web-based interface

(nsgportal.org) a job .zip file containing the data and the Matlab code to execute, plus further

submission parameters (Section 4.4 and 4.5). Else, (2) the user can submit, monitor, and

retrieve NSG jobs through tools using the NSG REST API (Section 4.2).

Job execution. Once the job files and relevant settings are submitted to NSG, independent of

the interface used NSG assigns a unique identifier to the job (Unique_job_identifier) and

generates a job status object with a handle in the following format:

NGBW-JOB-EEGLAB_TG-[Unique_job_identifier]

The NSG front end then sends the input job files with a job request to the remote HPC server for

processing. Once the job completes, its working directory is compressed (by zip) along with the

original job input and any output files. Additional files generated by NSG to report HPC

scheduler processing (scheduler_stderr.txt and scheduler_stdout.txt) or job errors (stderr.txt), as

10

well as the MATLAB command window output record (stdout.txt) are included in this directory.

The resulting .zip file is transferred to the NSG file system storage (Sivagnanam et al., 2015).

Once the results are ready for retrieval, an email is sent to the user to notify them of the job

completion. The user can then download the results contained in the .zip output file. Results

retrieval must be done through the same NSG access mode used for job submission (the NSG

web portal or the NSG REST API).

4. The EEGLAB nsgportal plug-in

Here we formally introduce nsgportal, a plug-in interface between EEGLAB and NSG

using the REST API.

4.1. Accessing NSG through the plug-in nsgportal

Nsgportal capitalizes on the availability of the NSG REST API to provide EEGLAB users

an nsgportal GUI plus MATLAB command line tools allowing them to manage and interact with

NSG jobs directly from the MATLAB and EEGLAB interfaces. (Alternatively, programmatic

access using open source curl commands allows the user to perform the same tasks outside

the EEGLAB environment, directly from the operating system command line, though doing this

requires detailed familiarity with operating system and curl syntax).

4.2. Implementation, architecture, and dependencies

The nsgportal plug-in, implemented and running in MATLAB, calls curl command line

tools that provide an interface to the NSG REST service. As a consequence, to run nsgportal

the user must have MATLAB and curl/libcurl installed on their computer. Currently, most macOS

and Windows (Windows10 and later) releases have curl installed by default, while Linux users

can easily install curl from their software repository. Since MATLAB and curl command line tool

code are compatible with macOS, Windows and Linux, the plug-in nsgportal will run without

modification in MATLAB on any of these platforms. As a plug-in to EEGLAB, nsgportal also

requires the EEGLAB environment functions to be in the MATLAB path and must be installed as

per the standard EEGLAB plug-in installation instructions (available online under

sccn.ucsd.edu/wiki at EEGLAB_Extensions_and_plug-ins).

11

Functions included in the nsgportal plug-in are designated by mimicking the function

name hierarchy used in EEGLAB. Nsgportal has two main sets of functions, designated by the

prefixes pop_ and nsg_. When called with fewer than the required arguments, pop_ functions

open a parameter entry window, else run directly without opening a window. The second class

of nsgportal functions, with prefix nsg_, can be called directly from MATLAB command line or

from other MATLAB scripts or functions. These functions perform lower-level tasks than the

pop_ functions. A main plug-in function (eegplugin_nsgportal) effects the inclusion and

manages the appearance of the nsgportal item(s) in the main EEGLAB GUI window menu.

The NSG interface in nsgportal is implemented in the functions nsg_jobs, nsg_run and

nsg_delete. They each format a curl command as per NSG REST API specifications, as a

MATLAB string variable using the inputs received as arguments. The formatted curl command is

then issued for execution using the MATLAB system command call. All communication with

NSG through the REST interface occurs within an SSL (Secure Sockets Layer) encrypted

session, ensuring that the information is transmitted safely. The code samples in Appendix A

show typical curl calls to NSG-R in nsgportal for (A.1) Submitting a job, (A.2) Checking job

status, (A.3) Retrieving job results, and (A.4) Deleting a job. Here the submitter must be a

registered NSG user (here credited with symbolic credentials your_username and

your_password). These examples do not demonstrate the full scope of the NSG REST API.

For more information, see the online API guide (nsgportal.org/guide.html).

Successful NSG job submission through the REST interface returns a job status XML

object. In nsgportal, this object is parsed into a MATLAB job structure containing job

information, parameters, and settings. To manage this interaction, the output from the curl

instructions used to submit the job and to request job status are saved in a temporary file with

extension .TXT or .XML. These files are parsed into a structure by xml2struct.m within nsgportal

and are then deleted. Similar workflows apply to other nsgportal interactions with NSG (job

creation and polling). Details of the XML object returned after submitting or managing an NSG

job can be found in the NSG REST API user guide (nsgportal.org/guide.html). To download job

output results only, the curl command line tool syntax (A.3) is quite similar but there is no need

to parse the output .zip file, and deleting a job does not return a job object.

12

Job structures contain information on current job status, results and errors at a more

detailed level of specificity and organization. To assist nsgportal users in troubleshooting, an

error-reporting heuristic has been implemented: this categorizes job status as either Completed

(job processed), Processing (job processing in progress), MATLAB Error encountered, or NSG

Error encountered. A successful NSG job should progress through a series of states (listed in

Appendix B), the last (Completed) indicating that the job results are available for download.

Note that these four NSG status categories are not the same as the internal nsgportal status

states, although they are related, as we will show next.

To check NSG job status, nsgportal first checks for the latest job message issued by

NSG. If it is Completed, it checks output file stderr.txt to look for error messages issued by

MATLAB (typically these are in the first line of the file, enclosed in curly brackets). If an error is

found, nsgportal sets its internal job status to MATLAB Error, or if not, to Completed.

If the last message issued for the job is not Completed, nsgportal checks the Failed field

in the job structure. If its value is 1, signifying an NSG failure in processing the job, nsgportal

sets its internal job status to NSG Error. If not, it sets its internal status to Processing to indicate

that the job is still being processed. This internal categorization is available only within the

nsgportal GUI.

4.3. Preparing nsgportal for use

Installation. All EEGLAB plug-ins including nsgportal can be installed by following the

procedure described (EEGLAB extensions/plug-ins under https://sccn.ucsd.edu/wiki/EEGLAB)

in the EEGLAB documentation. For the following, we assume the plug-in nsgportal has been

added to the EEGLAB installation.

Setting NSG credential and other options. Although nsgportal uses UMBRELLA

authentication within NSG-R, curl commands issued from EEGLAB to interface NSG employ

username and password while sharing the common application key ‘EEGLAB_TG’. These

commands also use settings that have to be defined by the user, e.g., the NSG URL (typically

‘https://nsgr.sdsc.edu:8443/cipresrest/v1’). Storing NSG credentials and managing other

nsgportal settings is performed by pop_nsginfo. This function belongs to the group of pop_

functions introduced in the previous section; we can therefore invoke its GUI by calling the

13

function without any argument (e.g., by simply entering pop_nsginfo on the MATLAB command

line) or by selecting EEGLAB menu item ‘Tools > NSG Tools > NSG account info’ (see Inline

Supplementary Figure 2).

The user-provided credentials and options are stored in file nsg_info.m in the root of the

home folder, or if provided in the path designated for EEGLAB options (see EEGLAB script

eeg_options.m). Alternatively, the same process of setting up the plug-in, performed in the

pop_nsginfo GUI (shown in Inline Supplementary Figure 2), can be accomplished by calling

pop_nsginfo from the MATLAB command window and providing the required inputs as key-

value pairs, as in the following code sample:

pop_nsginfo('nsgusername','[your_username]', …

 'nsgpassword','[your_password]',...

 'nsgkey','TestingEEGLAB-BCE8EC90088F4475AE48190A1B87EF8D', ...

 'nsgurl','https://nsgr.sdsc.edu:8443/cipresrest/v1', ...

 'outputfolder','/data/tmp');

Code sample 1: Generic command line call to pop_nsginfo to store NSG user credential information.

The EEGLAB default ‘nsgkey’ and ‘nsgurl’ values shown in the code sample should not be

altered. After registering for and obtaining an NSG account, as described above, the install

process described in this section should be performed only once to install the plug-in.

4.4. The main plug-in GUI: pop_nsg

The nsgportal GUI. The nsgportal graphical user interface (GUI) is controlled by the function

pop_nsg which, through its associated window and command line interface, is intended to be

the primary point of user interaction with NSG within EEGLAB. The main functionalities of

nsgportal, comprise the submission, managing, deletion, and retrieval of NSG jobs. The

functionalities supported by the pop_nsg GUI allow users to: (1) Submit an EEGLAB job to NSG

and set NSG-R options. (2) Perform test runs of NSG jobs on the local computer (typically using

a reduced instruction set). (3) Delete jobs from the user’s NSG account. (4) Download NSG job

results. (5) Load NSG job results into EEGLAB. (6) Visualize NSG job error and intermediate job

logs. (7) Access pop_nsg help documentation. The pop_nsg GUI (Fig. 2) can be invoked by

executing ‘pop_nsg’ on the MATLAB command windows or by selecting menu item ‘Tools >

NSG Tools > Manage NSG jobs’ from EEGLAB menu.

14

Figure 2. The pop_nsg.m graphical user interface (GUI) window. This window is intended to be the
primary point of user interaction with NSG within EEGLAB graphical environment. From this interface the
user can handle the submission, managing, deletion, and retrieval of jobs. The pop_nsg GUI comprises
three main sections, highlighted by dashed lines in the figure: Top section A (see green backing) allows
user to interact with jobs already submitted under their own personal credentials. A color-coded scheme
(see its legend in the bottom of the display window) reveals to the user the status of the job selected.
Middle section B (orange backing) shows status and other messages associated with the job selected in
Section A. Section C (cyan backing) manages user job submission.

The pop_nsg GUI has three main sections (highlighted in Fig. 2 by backing green, orange and

cyan areas; see labels on the upper right side of Fig. 2). Top Section A allows the user to

interact with their own jobs after submission to NSG. A list of all the active jobs under the user

account is displayed in the central text box. There, users can select a job with a mouse click,

either to then delete it from the queue, to examine its error logs, or to download and display its

results. Here, a font color code with four categories (see display window legend) is used to

display job status. Middle Section B displays job status and other messages associated with the

job selected in Section A. The first line of this information is one of the job status indicators

(Appendix B). The lower Section C allows users to submit jobs to NSG. Here the user can

specify the job files (as a named .zip file or folder). The MATLAB data processing script to run

must also be defined here, as well as other NSG processing options (e.g., requested maximum

run time). Another important feature allows the user to run a (user-prepared) downscaled

version of the job on their local computer to test the integrity of the script. To use this option, the

15

user must prepare and identify a limited version of the processing script, for example replacing

its major processing loop variable (e.g., N = all_files_to_process) with the quicker-running (e.g.,

N = 1)’. For a detailed explanation of the elements of this GUI and their functionality, see

Appendix D.

4.5. Nsgportal Matlab-interface command line tools

Nsgportal command line tools allow users to largely automate their workflow and make the NSG

job submission, job status monitoring, and job results retrieval processes simple for users --

and/or EEGLAB functions and plug-ins -- to accomplish. Main nsgportal functionalities --

submitting, monitoring, deleting jobs, and/or retrieving job results without GUI interaction -- can

be also performed directly using command line calls to function pop_nsg providing all its

required input arguments. Other useful functions include pop_nsginfo (to set up and record user

NSG credentials), nsg_jobs (to return the current list of user NSG jobs) and nsg_recurspoll (to

monitor the status of an NSG job). See their function help messages for usage examples.

Setting up user NSG credentials. After installing the nsgportal plug-in in EEGLAB, function

pop_nsginfo can be used to specify the user NSG credential. This function was introduced in

Section 4.3, where an example of its command line call was presented in the Code sample 1.

Submitting and managing NSG jobs. Function pop_nsg is the workhorse of the nsgportal

command line tools. It enables users to: (1) create and run an NSG job ('run' option); (2) test a

short form of the job on your local computer ('test' option); (3) retrieve NSG job results ('output'

option), and (4) delete an NSG job ('delete' option). The function pop_nsg must be called with

key-value input pairs as in the following pseudo-code:

NSGJobStructure = pop_nsg('option_name', 'option_value');

Code sample 2: Generic key-value input pairs used to invoke pop_nsg.

For options 'run' and 'test', the second argument must always be the pathname of the job

.zip file or the folder containing the job to be submitted (or locally tested). Using any of these two

options also requires a second pair of compulsory arguments (first argument, 'filename') to

identify the .m processing script file to be run in the user test or NSG run . For instance to run a

job located in path/to/my/job/folder running MATLAB script my_job_script.m:

16

[NSGJobStructure, AllNSGJobStructure] = ...

 pop_nsg('run','path/to/my/job/folder', ...

 'filename', 'my_job_script.m');

Code sample 3: Example command line call running an NSG job from the MATLAB command line using

pop_nsg

When pop_nsg is executed with any of the four mode parameters (‘run’, ‘test’, ‘output’, or

‘delete’), the function returns two outputs: (1) a job structure containing all relevant information

of the submitted or managed job, and (2) a cell array listing all NSG jobs currently in the user

NSG account. In the example code above, these two outputs are called NSGJobStructure and

AllNSGJobStructure respectively. These output objects use the same NSG job structure

introduced in Section 4.2.

When pop_nsg is called with options 'output' or 'delete', users can pass the job ID,

NSG job structure, or the job URL (see Section 4.2) as the second argument . To use either of

these two options, the referenced NSG job must exist in the user’s NSG REST account; to use

the ’output’ option, the job must have completed. This flexibility in invoking pop_nsg is

supported by the nsgportal functions nsg_getjobid and nsg_flindclinetjoburl, which respectively

translate job URLs to job IDs and vice versa. Function nsg_jobs retrieves information about the

jobs associated with the user’s NSG credential. Users can request a recursive check of the

status of a submitted job using nsg_recurspoll (see Appendix A.2). The call below sets the

polling interval to 2 minutes (120 seconds).

NSGJobStructure = nsg_recurspoll('My_Job_ID', 'pollinterval', 120);

Code sample 4: MATLAB command line call to nsg_recurspoll

Recursive polling in nsg_recurspoll is implemented using the MATLAB timer class to create an

object that manages a recursive execution of the sub-function nsg_poll, which in turn executes

nsg_jobs repeatedly to check job status by pulling the job status object.

4.6. Nsgportal documentation

17

A comprehensive nsgportal wiki2 linked to the nsgportal repository3, as well as function help

messages contained in nsgportal functions document its use.

The nsgportal wiki. The wiki begins with a quick introduction to the Open EEGLAB Portal and

details how to register as an NSG user and use its web portal. Details on installation and use of

the nsgportal plug-in are provided. To represent the workflow within nsgportal, we have

generated a plug-in function-calling scheme that may ease future modifications and

maintenance4. Finally, a section of the wiki presents detailed examples of how to use the

nsgportal plug-in both from the EEGLAB GUI and from the MATLAB command line. Additional

examples are given illustrating how to use nsgportal command line tools to equip new or

existing EEGLAB plug-ins with HPC optional capability.

Nsgportal function help messages. Each main function of nsgportal begins with a detailed

help message in EEGLAB format: a brief description of the function, a usage example, a table of

compulsory and optional input parameters, and a description of the outputs.

5. Applications and examples

Below, we show three applications using the nsgportal plug-in, applied to a representative EEG

dataset. The first two applications illustrate the submission, managing, results retrieval, and

deletion of jobs from the nsgportal GUI and MATLAB command line, respectively. The third

application demonstrates the use of nsgportal command line tools to implement a

computationally intense EEGLAB plug-in that gives the user the option to perform the

computation on HPC resources via NSG. We first demonstrate this capability by implementing a

simple plug-in using nsgportal functions, and then by extending the more complex RELICA plug-

in (Artoni et al., 2014 21) to include the option to run its computationally demanding processing

on NSG resources. Finally, we report the results of testing the NSG-enabled RELICA on actual

EEG data.

5.1. The test data and simple job example

2 https://github.com/sccn/nsgportal/wiki
3 https://github.com/sccn/nsgportal
4 https://github.com/sccn/nsgportal/wiki/Scheme-of-plug-in-functions-call

18

Test data description and preprocessing. To demonstrate the use of nsgportal, we use a

single dataset from the EEG/MEG study reported in (Wakeman & Henson, 2015) and made

publicly available on OpenNeuro.org (accession number: ds000117). For information on the

experimental paradigm and a description of the preprocessing steps applied to these data, see

Appendix C. The preprocessed data are a set of 132 EEG 3-sec data epochs time-locked to

presentations of visual stimuli and recorded from 70 EEG channels at a sampling rate of 250

Hz, saved as an EEGLAB dataset.

The test job script. Electric potentials recorded with EEG are the summation of the underlying

activity of multiple brain activity sources. Under favorable circumstances, the activity from these

sources can be separated by ICA (S Makeig et al., 2002). However, ICA computation may be

lengthy and computationally expensive. Here we show how to build a job script to use NSG to

decompose the data into maximally independent components (ICs) by applying Extended

Infomax Independent Component Analysis (ICA) using the EEGLAB function runica.

 First, we create a job folder (runica_on_nsg) containing the test data (files

wh_sub11_preproc.set and wh_sub11_preproc.fdt) plus a simple MATLAB script

(runica_on_nsg.m) that executes the decomposition via NSG and plots some results. The script

(Code sample 5 below) loads the dataset, runs the decomposition, plots results, then saves the

figure file and output EEGLAB dataset (now including the ICA mixing and unmixing matrices) to

return to the user. The input dataset is (optionally) deleted. The figure (IC_scalp_maps.jpg)

shows scalp maps (scalp projection patterns) of the largest 20 ICs (arranged in a 4-by-5 grid).

% Launch EEGLAB

eeglab;

% Load the sample EEGLAB dataset

EEG = pop_loadset('wh_sub011_proc.set');

% Decompose the data into independent component (IC) processes

EEG = pop_runica(EEG, 'icatype', 'runica');

% Plot the scalp maps of the first (and largest) 20 ICs

pop_topoplot(EEG, 0, [1:20] ,'EEG Data epochs',[4 5] ,0,'electrodes','on');

% Save the figure as a JPEG file

print('-djpeg', 'IC_scalp_maps.jpg');

% Save the dataset, now including the ICA decomposition matrix

pop_saveset(EEG, 'filename', 'wh_sub11_proc_output.set');

19

% Delete the input dataset to reduce the output file size

delete('wh_sub011_proc.set');

delete('wh_sub011_proc.fdt');

Code sample 5: Job script ‘runica_on_nsg.m’

Assuming we have obtained an NSG account and have installed the nsgportal plug-in, we can

then zip the job folder, log in to the NSG website (www.nsgportal.org), and submit the job by

identifying the .zip file containing the job folder. Else, we can do this and more using the

nsgportal GUI.

Building a job test script for local execution. A second, ‘test’ version of the job script

(‘test_runica_on_nsg.m’) in the job folder, differs from runica_on_nsg.m in only one way: it

reduces its computational complexity by asking for a much smaller number of ICA training steps

(here, it sets the runica option 'maxsteps' to only 5 instead of the default 512). The nsgportal

GUI can then be used to run the test script on the user’s computer to verify the accuracy of the

syntax in the rest of the script, thereby avoiding wasting user and NSG time and resources

attempting to run scripts that still need debugging. For jobs involving many data files (for

different participants and/or conditions) and/or surrogate data analysis, this might also involve

severely limiting the number of datasets and/or loop iterations to minimize compute time while

allowing MATLAB, running on the user’s local computer, to find any coding mistakes before

launching the much longer-running full job script on NSG.

5.2. Submitting, managing and retrieving the job using the nsgportal GUI

After we have installed the nsgportal plug-in (Section 4.3), we launch the EEGLAB GUI

(command, eeglab) and then the pop_nsg GUI -- either by entering pop_nsg on the MATLAB

command line or by selecting item ‘Tools > NSG Tools > Manage NSG jobs’ from the

EEGLAB GUI menu. To submit the sample job for processing via NSG from the nsgportal GUI

(Figure 2 above), we first browse and select the (compressed or uncompressed) job file

runica_on_nsg.zip using the ‘Browse’ button. After selecting the job file, the edit box ‘Job

folder or .zip file’ and the drop-down menu ‘Matlab script to execute’ are populated with the

path to the zip file and the names of the scripts runica_on_nsg.m and test_runica_on_nsg.m.

20

The field ‘Job ID’ is also populated with a default job name that we choose to change to the

more recognizable ‘runica_on_nsg_test’.

Running the test script locally. Field ‘Matlab script to execute’ has the two .m file entries:

runica_on_nsg.m and test_runica_on_nsg.m. To test the script syntax on our local computer,

we first select the test script (test_runica_on_nsg.m) and press button ‘Test job locally’. This

script is the light version of the job script runica_on_nsg.m. After the job completes its local

processing without any error, we are sure the job script syntax at least contains no syntax

errors. Testing the jobs script locally is an optional step not required to submit a job for

processing in NSG. However, this check may save a lot of time in troubleshooting syntax errors

that may delay and interfere with the completion of the job.

Submitting the job to NSG. After testing the downscaled version of the job locally, we selected

the script to execute in NSG (runica_on_nsg.m) in the field ‘Matlab script to execute’. Next, in

edit box ‘NSG run options’, we set the job maximum time allocation (here) to one hour by

typing ‘runtime’, 1. The unit here is hours, and the maximum setting is 48 hours. Note: do not

set this to less time than the job will require! Then, we click the button ‘Run job on NSG’ to

submit the job for processing. Upon successful job submission, the Job ID we assigned

(‘runica_on_nsg_test’), is shown in the list of job records NSG associates with our NSG user

credential. The current status of the job (‘INPUTSTAGING’) is displayed in the job status panel

(see Appendix B for status name interpretations).

Monitor job status. After the job is submitted, to ask pop_nsg to check periodically for its

status check the checkbox ‘Auto-refresh job list’. Messages giving the current NSG status of

the selected job are then printed (by default, every 30 seconds) on the MATLAB command line.

The text color used to display the job ID and job status in the nsgportal GUI, will also be

updated to show the current job status.

Retrieving the MATLAB command window output of the job. The MATLAB command

window output issued in the NSG MATLAB session during the job processing can be checked

from pop_nsg GUI. To retrieve and display this information in the MATLAB browser, we used

the button ‘Matlab output log’. It is possible that this information is not available at the time of

the request; in this case the user will be notified of this by a MATLAB pop-up window.

21

Retrieving and loading job results. When the job has completed, an email to this effect is sent

to the registered user. At this point, the job status in the GUI also reads ‘COMPLETED’. We can

then download the job results by clicking on ‘Download job results’. The names of the

downloaded and unzipped files are then printed on the MATLAB command window. The

following code sample resembles the message printed on the MATLAB command window after

downloading the results of the runica_on_nsg.zip test job.

1>> ./runica_on_nsg/

2>>./runica_on_nsg/IC_scalp_maps.jpg

3>>./runica_on_nsg/runica_on_nsg.m

4>>./runica_on_nsg/wh_sub11_proc_output.set

5>>./runica_on_nsg/wh_sub11_proc_output.fdt

6>>./scheduler_stderr.txt

7>>./scheduler_stdout.txt

8>>./stderr.txt

9>>./stdout.txt

10>>Done.

11>>File downloaded and decompressed in the

output folder specified in the settings

12>>Accessing job:

"https://nsgr.sdsc.edu:8443/cipresrest/v1/job/my_useraname/NGBW-JOB-

EEGLAB_TG-9FB3515E932C4CA8AADAEF6D40167F0D" on NSG...

13>>Done.

Code sample 6: The code above shows the MATLAB command window output after retrieving job results

using the ‘Download job results’ button in the pop_nsg GUI. Lines 1-5 (in green) show the files

generated during the processing. The input job data files were (optionally) removed by our test script, so

are not contained in the downloaded results.

Here, we can see that both results and files submitted (in green) are in the downloaded

file, saved in the path defined previously in pop_nsginfo.

To explore the output files, we use the file explorer implemented in the button Load/plot

results. This application can load datasets into EEGLAB as well as display a wide range of

image formats generated during a job processing in NSG. From this file explorer, we can

navigate to (by double-clicking into) the downloaded folder runica_on_nsg and access the result

files. For instance, after navigating to the folder with the results of the job in this example, if the

file wh_sub11_proc_outpout.set is selected and opened by using the button Load/plot, the

22

main EEGLAB window will pop up, showing that the selected data has been loaded and that the

ICA decomposition has been performed (the ICA weights field in the GUI reads 'yes').

Deleting a job. After retrieving the results, we may proceed to delete the job from our NSG

account, here by selecting the job ‘runica_on_nsg_test’ in the pop_nsg job list and clicking the

button ‘Delete this NSG job’. This functionality can be used either on finished jobs or jobs being

currently processed. The deletion of jobs from NSG is accomplished by calling nsg_delete from

pop_nsg.

5.3. Submitting, managing and retrieving a job using nsgportal command line
tools.

Next, we show how to create, manage, and retrieve NSG jobs using nsgportal command

line tools to automate a data analysis pipeline. For this purpose, we will use the same runica

test job and data introduced in Section 5.1. The nsgportal command line tools were introduced

in Section 4.5; there their key components are described in more detail. Here, we again assume

we have obtained an NSG account and have installed the nsgportal plug-in (see Section 4.3).

Submitting a job to NSG. The code sample below uses function pop_nsg to submit the job

runica_on_nsg.zip for processing via NSG. Here we store the path to the job .zip file in a

variable; this path can also be passed directly as a string to the function:

% The job zip file is located in home directory

path2zip = 'Users/eeglabHome/runica_on_nsg.zip';

% Execute the job

currentjob = pop_nsg('run',path2zip,'filename', 'runica_on_nsg.m', …

 'jobid','runica_on_nsg_test');

Code sample 7: Using pop_nsg for submitting the runica_on_nsg.zip job for processing at NSG

Notice that three pairs of key-value parameters were used here (‘run’, 'filename' and

‘jobid’). The ‘filename’ argument is compulsory when using the option 'run' to specify the top-

level script run in the job. Default options in pop_nsg assign a randomly generated ID to the job.

However, we encourage users to specify a meaningful job ID for their NSG jobs, as this will help

in later job management, especially when the number of user submitted jobs is large. In the

23

code sample above, we specify the job ID (‘runica_on_nsg_test’) using the input parameter

jobid. After executing the code above, the function pop_nsg returns a MATLAB NSG job

structure for the submitted job (currentjob) that we will use as an input for the next processing

steps.

Although not shown here, users can also specify other job parameters while submitting a

job by providing key-value pair arguments to the function call. These optional arguments include

the following: 1) 'outfile': the local folder to which the NSG results are to be downloaded. The

default value for this parameter is the jobname and job ID plus prefix 'nsgresults_' (for example,

nsgresults_ testjob_1234). 2) 'runtime': the maximum time (in wall clock hours) to allocate for

computation of the job on NSG. The default value is 0.5 hours (the maximum value is 48 hours).

Note, again, that if the job takes longer to complete than asked for here, it will be stopped! This

maximum time estimate is used by the job scheduler to maximize XSEDE resources.

'subdirname': Name of the sub-directory containing the script file to run on NSG if the script file

is not in the job’s root folder. The options available in pop_nsg are not restricted to those shown

here, as the list may grow based on the users needs. The changes and additions are always

made available through the nsgportal documentation (Section 4.6).

Monitoring job status periodically. After the job is submitted to NSG it will be processed on

the XSEDE network. We can check the status of the job periodically by calling function

nsg_recurspoll, providing as arguments the job structure obtained when submitting the job (job

ID, URL or structure are valid inputs), currentjob, and the polling interval in seconds. This

function is particularly handy for running functions that operate on the output of a submitted

NSG job. Below, we specify the job structure currentjob as a first argument and 120 seconds (2

minutes) as the polling interval:

currentjob = nsg_recurspoll(currentjob, 'pollinterval', 120);

Code sample 8: Command line call initiating recursive polling of the job status of job ‘currentjob’.

 Once initiated, function nsg_recurspoll exits when the NSG job has completed and its output is

ready to be accessed by the user. The function also returns a job structure containing the status

of the specified job. This structure is basically the same as that provided as input, but with the

job status field updated.

24

Retrieving job results. After the job completes and function nsg_recurspoll exits, job results

can be retrieved using pop_nsg by providing the job structure following the first argument

‘output’.

pop_nsg('output', currentjob);

Code sample 9: Command line call to pop_nsg to retrieve results of job ‘currentjob.’

The input currentjob contains the NSG job structure of the job we want to retrieve. As in the

example using nsportal GUI, the output files are downloaded to the location defined by the user

using pop_nsginfo (see Section 4.3).

Deleting an NSG job. Below, we use the output structure of nsg_recurspoll to delete the job

from the NSG record associated with the user’s NSG credential.

NSGjobstruct = pop_nsg('delete', currentjob);

Code sample 10: Command line call to delete the job whose job structure is currentjob.

The output here is the NSG job structure (NSGjobstruct) of the job deleted. Note that

when this command is executed the job is deleted from the user’s NSG account and can no

longer be accessed.

In this sub-section, we have shown a proof of concept example automating the use of

NSG resources using nsgportal command line tools. With minor changes to the job script, the

example here might be scaled up to process data from many subjects within a single job, etc.

The tools framed here can also be used to implement HPC access offered by NSG from

within any EEGLAB function or plug-in. This is the focus of the next section.

5.4. Accelerating EEGLAB plug-in performance using nsgportal tools

EEGLAB plug-in extensions allow users to build and publish new or customized data

processing and visualization functions using EEGLAB data structures, functions, and

conventions. Plug-in functions can be called conveniently by selecting the new menu item(s)

they introduce into the EEGLAB menu of users who have downloaded and installed them. In

25

this Section, we use nsgportal command line tools to implement access to NSG HPC

capabilities in: (1) an example plug-in that performs the same processing as in the sample job

shown in Section 5.1 and, (2) an example adding nsgportal command line calls to an existing

plug-in, RELICA (Artoni et al., 2014).

5.4.1. Example plug-in: RUNICA_NSG

 Here we describe a simple yet fully functional EEGLAB plug-in (RUNICA_NSG)

exemplifying the application of nsgportal command line tools to implement HPC computation

from within EEGLAB plug-ins. To create this plug-in, we modified the simple runica_on_nsg.m

script presented above (Section 5.1) by turning it into a function eeg_runica_nsg.m that accepts

inputs that 1) point to the data matrix to decompose, and 2) select the ICA algorithm to use in

the decomposition. To allow the sample plug-in to be called directly from the EEGLAB GUI

menu, two additional functions are needed: function eegplugin_runica_nsg manages the listing

of the plug-in in the EEGLAB menu, while pop_runica_nsg manages the inputs, first popping up

a parameter entry window if its two required input arguments are unspecified, and then

redirecting computation either to the local computer resource or to NSG. The example

RUNICA_NSG plug-in function code is available online, both from the EEGLAB Extension

Manager5 and from its GitHub repository6.

 The workflow of RUNICA_NSG is purposely simple. When its main pop_window function

pop_runica_nsg is invoked either from the EEGLAB menu or MATLAB command line, the data

matrix in the currently loaded EEG dataset (EEG.data) is selected for stochastic decomposition.

Two further parameters are required to specify: (1) whether the computation should be

performed on the user’s computer or on XSEDE network HPC resources via the user’s NSG

account, and (2) which ICA algorithm to use (here, given only two choices: ‘runica’ and ‘jader’).

If the user chooses to perform the computation on their local computer (second argument ‘local’)

pop_runica_nsg will perform the processing locally (by calling eeg_runica_nsg.m), returning the

input EEG dataset structure, now containing the computed ICA decomposition parameters.

If the user chooses to perform the computation through NSG (second argument ‘nsg’),

the function pop_runica_nsg will: (1) create a temporary folder, (2) save the EEG data passed

5 http://sccn.ucsd.edu/eeglab/plugin_uploader/plugin_list_all.php
6 https://github.com/sccn/nsgportal_manuscriptsupport/tree/master/runica_nsg_plugin

26

as input in this folder, and (3) generate and save in this folder a MATLAB script

(runica_nsg_job.m) including a call to the RUNICA_NSG plug-in function eeg_runica_nsg

including the user-specified parameters. Then pop_runica_nsg will proceed to submit this job

folder to NSG using nsgportal command line tools, identifying runica_nsg_job.m as the main

script to execute (first argument ‘filename’). After submitting the job, eeg_runica_nsg will exit,

returning the NSG job ID assigned to the task.

The user can provide this job ID to pop_nsg to monitor the job progress and then, when

it completes, use it to retrieve its results through pop_runica_nsg. The process of job

submission and retrieval, as implemented using nsgportal command line functions, is shown in

Fig. 3, in which the nsgportal functions used in the process are shown in green boxes.

Figure 3. Workflow of the example plug-in RUNICA_NSG. This plug-in illustrates the use of nsgportal
command line functions that enable EEGLAB functions and plug-in tools to run on HPC resources via
NSG. After installing the plug-in in the eeglab/plugins/ directory, the user can call it via the EEGLAB menu
(Tools > Compute ICA via NSG) or equivalently by invoking function pop_runica_nsg from the MATLAB
command window. In the second case, an EEG data structure must be provided as input. If invoked from

27

the menu, or when either of its other two arguments, compflag (run locally or via NSG) or icamethod (ICA
algorithm to use) are not specified, a MATLAB window will pop up to allow the user to input these
parameters. When pop_runica_nsg is invoked from the EEGLAB GUI, the currently loaded EEGLAB
dataset (EEG.data) is processed and the pop window is always launched to allow manual entry of
arguments compflag and icamethod. When the computation is to be run via NSG, pop_runica_nsg
creates a temporary folder and saves the current EEG dataset in it along with function script
eeg_runica_nsg.m and a custom script (runica_nsg_job.m) generated to invoke this function using the
parameters provided by the user (here, icamethod). This script, along with the data saved, is then
submitted to NSG for processing under a user-designated job ID (JobID in the figure). Function pop_nsg
with options ‘run’, ‘filename’ and ‘jobid’ performs these steps. Following job submission, pop_runica_nsg
exits, providing the submitted jobID as output. Once the NSG job is complete (as flagged by an email
message sent to the user from NSG, or via the open pop_nsg GUI), the user must retrieve its results by
calling pop_runica_nsg with the JobID as its first and only argument. Internally, pop_runica_nsg will check
the validity of the job ID and will then call pop_nsg (with arguments ‘run’ and ‘delete’) to retrieve the
results and then delete the job from the user’s NSG account record. Finally, the EEG data structure
provided originally as input, including the ICA decomposition parameters, is loaded into EEGLAB by
pop_runica_nsg and returned as output.

5.4.2. Adding HPC computation to the RELICA plug-in

RELICA (for ‘RELiable ICA’) is a method that uses a stochastic approach to characterize

the reliability of component processes identified by ICA decomposition of a multichannel

dataset, by analyzing the stability of the component processes under bootstrap resampling.

RELICA thus performs multiple ICA decompositions of bootstrapped versions of the input data,

then clusters the ICs from all the decompositions based on similarities between their time

courses. By default, the number of clusters corresponds to the number of ICs per

decomposition. Each cluster in the analysis is associated with an exemplar IC, selected to be

the IC nearest to the cluster centroid in the clustering space. Finally, RELICA computes a

measure of the compactness of each bootstrap IC cluster that provides a within-subject

measure of IC stability for each IC.

Figure 4 shows a high-level view of the process implemented in the original RELICA

implementation by Artoni et al. (Artoni et al., 2014). Most of the computation time here is spent

in the sequence of ICA decompositions performed on the bootstrapped data (red area, Fig. 4) .

The high computational load required to perform these processes, particularly for large datasets

with many channels, makes the RELICA plug-in a good candidate for running on NSG high-

performance computing resources using nsgportal tools.

28

Figure 4. Original RELICA workflow. A high-level view of the original implementation of RELICA as
proposed by Artoni et al. (Artoni et al., 2014). Given an EEG dataset, relica first performs a reference
decomposition of the whole input data, and then multiple ICA decompositions of bootstrapped versions of
the same data (red area). The function relica then clusters the identified ICs from all the decompositions
and from this computes a measure of the stability of each IC in the reference decomposition.

 Here we modified the RELICA implementation to reduce its runtime. First we parallelized

the main for loop in the RELICA bottleneck (red area) using parfor from the MATLAB Parallel

Computing Toolbox to speed processing on either local (multi-core) or (NSG-accessed) HPC

computers. Then we added nsgportal code to enable it to run on XSEDE HPC resources via

NSG. Fig. 5 shows a high level view of the resulting NSG-capable RELICA code.

The user first provides an EEGLAB dataset (in the form of an EEG data structure) for

processing by relica. As in Section 5.4.1, by specifying the ‘nsgflag’ argument as ‘local’ or

‘NSG’, the user can direct the computation to the user’s local computer or to NSG resources. In

the latter case, relica will create a command line call script to invoke relica on the HPC resource

and pass the user-selected options to it. This script plus the input data are saved in a temporary

folder and submitted to NSG as a job using pop_nsg with argument ‘run’. If the submission is

successful, the (assigned or optionally user-specified) job ID is returned as a text output. This

29

job ID must later be used to retrieve the results when available. Here, the user provides relica

with the job ID as first argument.

Figure 5. The NSG-capable RELICA plug-in. A high level view of the NSG-capable RELICA plug-in.
Here we have added a last input, compflag, to the original inputs of the main function relica to indicate
where the computation should be carried out (‘nsg’ or ‘local’). When relica is called with an EEG set
structure and compflag is ‘local’, computation is performed as usual (central yellow panel). If compflag is
‘nsg’, nsgportal code in relica first saves the current EEG dataset in a temporary folder also containing a
script (relica_nsg_job.m) generated to run relica on NSG with the parameters provided by the user. This
script and the data provided as input are submitted to NSG for processing using pop_nsg with first
argument ‘run’ (green panel on right). Additional inputs are provided to indicate the script to run
(relica_nsg_job.m), and the designated job ID. This uses pop_nsg options ‘run’, ‘filename’, and ‘jobid’.
After the job submission, relica exits, providing the jobID as output. After this, the plug-in processing
proceeds as in runica_nsg (Figure 3). Once the NSG job is complete, the user provides the job ID to NSG
to retrieve the results by again calling relica with the job ID as the first and only argument. After checking
the validity of the submitted job ID, relica uses pop_nsg (with arguments ‘run’ and ‘delete’) to retrieve the
results and then delete the job from the user’s NSG account. Finally the submitted EEG dataset plus the
RELICA-computed IC reliability measures are provided in the function output.

30

When relica confirms the validity of the provided job ID and that the job is complete, it

downloads the job results (pop_nsg ‘output’), deletes the job from the user’s NSG account

(pop_nsg ‘delete’) and loads the output of relica into the EEG dataset structure. The results of

RELICA are stored in the EEG dataset structure, allowing seamless integration of NSG

computation into RELICA post-processing and results visualization.

5.4.2.1. RELICA performance: HPC versus local computing

To test the performance of RELICA running via NSG on XSEDE cluster Comet, we ran

RELICA on the sample EEG dataset referenced in Section 5.1, setting the number of bootstraps

to 100 and specifying ICA algorithm ‘runica’ (Extended Infomax ICA) (Bell & Sejnowski, 1995;

Lee, Girolami, & Sejnowski, 1999). The two bars on the left in Fig.6 show RELICA processing

time on a modern laptop (MacBook Pro, Intel(R) Core(TM) i7-4770HQ 4�core CPU @ 2.20

GHz) and on NSG (1 24-core node of XSEDE network HPC resource Comet). Timestamps for

each NSG process were retrieved from the job status XML object introduced in Section 4.2.

Despite the relative simplicity of the task, via NSG the RELICA job was performed 11 times

faster than on the laptop. A detail of the NSG processing time, magnified x10 in the gray panel

on the right side of Fig.6, shows the time the job spent in the different NSG job processing

stages including data handling and job scheduling. The scheduling delay depends on the queue

wait time of the HPC machine to which NSG sends jobs for processing, so may vary with

machine demand intensity.

31

Figure 6. RELICA processing time on NSG versus a laptop. The two leftmost bars represent recorded
processing time running RELICA on the sample data using a laptop (MacBoook Pro, Intel(R) Core(TM) i7-
4770HQ 4�core CPU @ 2.20GHz) and via NSG (1 node, all 24 cores of the XSEDE network cluster
Comet) using 100 iterations of ICA decomposition using ‘runica’ (Scott Makeig et al., 1997). A detail of
NSG processing time magnified by 10 is shown in the right gray panel. Here the time has been split to
show the time the job spent on each of the NSG stages. Here the initialization stages (bottom of right bar)
produced only a small delay, though this may vary with current system load. Data upload and download
times (not shown) here required about as much time as the 3 job initialization stages (right column
bottom), but these delays are still negligible compared to the time saved by performing the computation
using NSG versus on the laptop. Upload and download times depend heavily on the Web bandwidth and
traffic load between the user machine and UCSD.

In a second test, we explored the reliability of the RELICA computation performed via

NSG vis a vis two trial runs performed on the same laptop. To do this, we computed pairwise

correlations between the IC cluster exemplar maps obtained from RELICA computed via NSG

and from the two runs on the laptop using relica options as in Section 5.4.2. Results of this

analysis are shown in Fig. 7, in which the sorted best-matching IC-pair correlations between the

cluster exemplar IC maps obtained from the NSG and first laptop run (NSG, Laptop1), NSG, and

the second laptop run (NSG, Laptop2), and between the two laptop runs (Laptop1, Laptop2), are

shown in blue, green and orange traces respectively. As we can see, in all the output IC-pair

comparisons (NSG versus Laptop1, NSG versus Laptop2, and Laptop1 versus Laptop2) at least

32

60 of the 70 IC pairs are near-perfectly replicated. The small remaining variability results from

the stochasticity of the ICA computation itself.

Fig. 7 also shows four sets of best-matching IC maps from the three runs. Black lines

show the mean correlation-sorted rank of the three correlated IC cluster exemplar maps.

Numbers above the maps give the stability index reported by RELICA for these ICs. The high

similarity of the maps (even for the rightmost pair), demonstrate the high level of consistency of

RELICA output across runs and computing resources.

Figure 7. Cluster exemplar scalp map correlations for best-matching IC pairs in the output of
the same RELICA decomposition run (twice) on a laptop and (once) on XSEDE network cluster
Comet via the Neuroscience Gateway using nsgportal. Top blue trace: correlations of best-
matching IC scalp map pairs, sorted by decreasing correlation. Scalp maps: Scalp maps of some
best-matching ICs from the three decompositions. Black traces point to the mean correlation rank
of these ICs in the three pairwise comparisons among the three maps. Numbers above the scalp
maps give the stability index reported by RELICA for these ICs.

6. Discussion

Recently (Delorme et al., 2019) we introduced the Open EEGLAB Portal (OEP)

framework providing free use of high-performance computing (HPC) resources from the

EEGLAB environment through the Neuroscience Gateway (NSG, nsgportal.org). Here, we

33

report the release of an EEGLAB plug-in, nsgportal, implementing an interface between NSG

and EEGLAB running on MATLAB on any Web-connected computer. The nsgportal plug-in

uses the capabilities of the NSG REST API to enable optional HPC processing of

computationally intensive tasks directly from any internet-connected EEGLAB GUI, or from any

suitably adapted EEGLAB function or the MATLAB command line. The nsgportal features a

flexible and user friendly GUI that allows users to directly submit, manage and retrieve jobs

running on the U.S XSEDE network of HPC resources from within any EEGLAB session. The

set of nsgportal command line tools supporting the functions of its GUI, enables users to create

their own HPC computation-enabled functions, function pipelines, and EEGLAB plug-ins, while

making the NSG job submission and results retrieval process as simple as possible. Detailed

documentation and wiki pages are available to support nsgportal use and maintenance.

Here we have described nsgportal functions and interfaces, and pointed to online

documentation to support their use, maintenance and further development. We have presented

three examples to illustrate the use of nsgportal and its potential applications. The first two

examples demonstrated how to use nsgportal to create, manage, retrieve results from, and then

delete an NSG job within the nsgportal GUI and from the EEGLAB session command line. Here

we used a simple script to compute an ICA decomposition of an EEG dataset, save the results,

and plot images of the resulting IC scalp maps. The structured approach and guidelines used in

these examples can be easily modified to accomplish more computationally intensive tasks.

We then demonstrated (Section 5.4.2), through a concrete example, how to use

nsgportal command line functions to implement direct HPC access from within any EEGLAB

function or plug-in. For this purpose, we modified the job presented in Section 5.1 by turning the

earlier example script into a function accepting inputs pointing to the data matrix to decompose

and selecting the ICA algorithm to use in the decomposition. The resulting simple example plug-

in (RUNICA_NSG) is available from the EEGLAB plug-in manager and includes abundant

comments and documentation to support implementing HPC access using nsgportal within

other EEGLAB functions and plug-ins. Please note that EEGLAB plug-ins can be run in NSG

processing scripts without including any nsgportal functions; many commonly-used plug-ins are

available in the EEGLAB NSG distribution -- any that are not yet available directly within NSG

can be uploaded to NSG, along with the data and any other custom EEGLAB functions. Using

the nsgportal functions within EEGLAB functions and plug-ins (as in Sections 5.4.1 and 5.4.2) is

34

a convenient option for authors of new or existing plug-ins to consider, as using nsgportal

functions they can provide users an NSG-mediated computation option within the plug-in itself.

To show this application operating in an existing EEGLAB plug-in in, we chose to use

the more computationally demanding RELICA plug-in of Artoni (Artoni et al., 2014). The addition

of nsgportal tools to RELICA was presented in Section 5.4.2.

To explore the impact of these changes on RELICA performance, we ran a RELICA task

on NSG and on a modern laptop (MacBoook Pro, Intel(R) Core(TM) i7-4770HQ 4-core CPU @

2.20GHz). The NSG computation was eleven times faster than on the laptop, and the resulting

output across three runs (one via NSG and two on the laptop) were practically indistinguishable

(Section 5.4.2.1). NSG computation time included data handling and scheduling delays. These

times can vary depending on the system load at the time of submission. To probe variability in

the times required for NSG data handling and job scheduling, we submitted the ICA

decomposition job (Section 5.1) to NSG repeatedly over a month, and recorded computation

times and scheduling delays. Total computation time averaged 31 ± 3 min (mean ± standard

deviation). Of this, job scheduling accounted for 2 ± 4 min (with a non-normal distribution).

These results provide a rough idea of the stability of NSG regarding scheduling delay, here

under relatively modest user demand.

Job file upload and download durations may depend heavily on user Internet bandwidth

and job size. Data upload and download times for the RELICA test job were negligible

compared to the required length of the computation. However, we must warn users that data I/O

speed may be an important factor to consider when weighing the advantages of running NSG

jobs requiring very large data file uploads. NSG data I/O speeds vary greatly depending on the

bandwidth and then-existing traffic load of each link in the user connection to UCSD.

 Lack of adequate computational power currently acts as a kind of ‘compute horizon’

boundary on scientific imagination itself -- enhancing computational power can thus, at its best,

both prompt and enable new scientific vision and discovery. However, before submitting

EEGLAB jobs to run via NSG using nsgportal, we encourage users to consider the time

cost/benefit ratio of submitting a job for processing to NSG versus using a local compute

resource. There may be instances in which the use of a local resource and/or alternate analysis

method are more efficient than using NSG -- for example, in cases in which uploading the data

35

to NSG might itself require more time than performing the computation locally or where the

applied algorithm may itself be easily optimized to achieve the desired computation speed. Use

of the substantial compute resources available via NSG should be exercised thoughtfully,

particularly in these times in which reducing the human carbon footprint appears key to

preserving human civilization in its current form.

Another important aspect to consider before submitting a job to NSG is whether and to

what extent the task itself can take good advantage of parallel computing resources. In some

(extreme) cases, the overhead involved in setting up and maintaining parallel processing might

require more time than the actual computation. Jobs running iterative processes each requiring

a long computation time (such as optimal electrical head modeling or ICA decomposition of

large datasets), or jobs applying intensive processing to a large amount of data (applying

time/frequency analysis to a large EEG study, for example) may best take advantage of NSG

resources. Other EEGLAB scripts, functions, and pipelines that use vectorized code already

optimized for local computation may not benefit from being sent to NSG for batch processing.

The latter could only be justified when the data handled by the pipeline are too large for a

personal computer to manage. Finally, jobs that require human interaction (e.g., manual data

cleaning) cannot take useful advantage of batch-mode HPC processing.

Some current limitations: Currently, on the Comet supercomputer running (at present) 24-core

nodes (note: the planned successor to Comet will use 64-core nodes), and NSG can assign a

maximum of one node (24 cores) to each EEGLAB job, though this limitation will soon be

relaxed with the planned introduction on Comet of the MATLAB Parallel Server™ library.

Another current limitation is the lack of NSG support for data retention and shareability within

user NSG accounts. Under a current NeuroElectroMagnetic data Archive and tools Resource

(NEMAR) project operating under the OpenNeuro data archive umbrella (openneuro.org), we

are developing a solution that will ultimately allow joint use within NSG of personal and/or public

data published on OpenNeuro.

7. Conclusions

Here we have described nsgportal, an EEGLAB plug-in toolbox providing neuroscientists

and others using the EEGLAB signal processing environment (sccn.ucsd.edu/eeglab) free

access to HPC resources of the U.S. XSEDE high-performance computing network directly from

36

the EEGLAB GUI or session MATLAB command line through a programmatic interface to the

Neuroscience Gateway (nsgportal.org). We also showed how to use the nsgportal command

line tools to equip EEGLAB functions and plug-in toolboxes with direct HPC run capabilities.

Finally, we performed a proof-of-concept test of nsgportal performance on a suitable EEG data

processing task, and confirmed the equivalence of the obtained results.

The ease and flexibility of the nsgportal tools can accelerate any neuroelectromagnetic

data research in need of higher computational power. In particular, dynamic modeling and

machine learning approaches that are now being applied to human electrophysiological data

can require unprecedented computing power. Limitations in available computing resources

might be said to constitute a ‘compute horizon’ beyond which researchers cannot or dare not

explore or imagine. Extending the compute horizon for electrophysiological imaging research

using nsgportal tools may hopefully stimulate researchers to use new research methods built on

richer data models and thereby obtain new results stimulating new insights into brain function

and health.

8. Funding sources

This work was supported by the National Institutes of Health, U.S.A. (R01-NS047293,

R24-MH120037, R01-MH123231) and the National Science Foundation (#1458840), and by a

gift from The Swartz Foundation (Old Field, NY).

9. Acknowledgements

Figure 1 uses elements designed by macrovector/Freepik and Freepik (freepik.com). The

authors also thank all nsgportal beta users for their encouragement and valuable feedback and

to Dr. Johanna Wagner for helping with the references.

37

References

Akalin Acar, Z., & Makeig, S. (2010). Neuroelectromagnetic forward head modeling toolbox.

Journal of neuroscience methods, 190, 258-270. doi:10.1016/j.jneumeth.2010.04.031
Alexander, L. M., Escalera, J., Ai, L., Andreotti, C., Febre, K., Mangone, A., . . . Kovacs, M.

(2017). The Healthy Brain Network Biobank: An open resource for transdiagnostic
research in pediatric mental health and learning disorders. bioRxiv, 149369.

Artoni, F., Menicucci, D., Delorme, A., Makeig, S., & Micera, S. (2014). RELICA: a method for
estimating the reliability of independent components. Neuroimage, 103, 391-400.

Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation
and blind deconvolution. Neural computation, 7(6), 1129-1159.

Bigdely-Shamlo, N., Cockfield, J., Makeig, S., Rognon, T., La Valle, C., Miyakoshi, M., &
Robbins, K. A. (2016). Hierarchical Event Descriptors (HED): semi-structured tagging for
real-world events in large-scale EEG. Frontiers in neuroinformatics, 10, 42.

Bigdely-Shamlo, N., Makeig, S., & Robbins, K. A. (2016). Preparing laboratory and real-world
EEG data for large-scale analysis: a containerized approach. Frontiers in
neuroinformatics, 10, 7.

Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.-M., & Robbins, K. A. (2015). The PREP
pipeline: standardized preprocessing for large-scale EEG analysis. Frontiers in
neuroinformatics, 9, 16.

Bower, J. M., & Beeman, D. (2012). The book of GENESIS: exploring realistic neural models
with the GEneral NEural SImulation System: Springer Science & Business Media.

Brunet, D., Murray, M. M., & Michel, C. M. (2011). Spatiotemporal analysis of multichannel
EEG: CARTOOL. Computational intelligence and neuroscience, 2011.

Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in
cognitive sciences, 14(11), 506-515.

Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D., . . . Yger, P.
(2009). PyNN: a common interface for neuronal network simulators. Frontiers in
neuroinformatics, 2, 11.

Delorme, A., Majumdar, A., Sivagnanam, S., Martinez-Cancino, R., Yoshimoto, K., & Makeig, S.
(2019). The Open EEGLAB portal. Paper presented at the 2019 9th International
IEEE/EMBS Conference on Neural Engineering (NER).

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial
EEG dynamics including independent component analysis. Journal of neuroscience
methods, 134(1), 9-21.

Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., . . . Dapretto, M.
(2014). The autism brain imaging data exchange: towards a large-scale evaluation of the
intrinsic brain architecture in autism. Molecular psychiatry, 19(6), 659.

Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2), 774-781.
Gabard-Durnam, L. J., Mendez Leal, A. S., Wilkinson, C. L., & Levin, A. R. (2018). The Harvard

Automated Processing Pipeline for Electroencephalography (HAPPE): standardized
processing software for developmental and high-artifact data. Frontiers in neuroscience,
12, 97.

Gewaltig, M.-O., & Diesmann, M. (2007). Nest (neural simulation tool). Scholarpedia, 2(4),
1430.

Goodman, D. F., & Brette, R. (2009). The brian simulator. Frontiers in neuroscience, 3, 26.
Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E. P., . . .

Halchenko, Y. O. (2016). The brain imaging data structure, a format for organizing and
describing outputs of neuroimaging experiments. Scientific Data, 3, 160044.

38

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., . . .
Hämäläinen, M. S. (2014). MNE software for processing MEG and EEG data.
Neuroimage, 86, 446-460.

Hanke, M., & Halchenko, Y. (2011). Neuroscience Runs on GNU/Linux. Frontiers in
neuroinformatics, 5(8). doi:10.3389/fninf.2011.00008

Hines, M. L., & Carnevale, N. T. (2008). Translating network models to parallel hardware in
NEURON. Journal of neuroscience methods, 169(2), 425.

Holdgraf, C., Appelhoff, S., Bickel, S., Bouchard, K., D'Ambrosio, S., David, O., . . .
Gorgolewski, C. (2018). BIDS-iEEG: an extension to the brain imaging data structure
(BIDS) specification for human intracranial electrophysiology.

Holdgraf, C., Appelhoff, S., Bickel, S., Bouchard, K., D’Ambrosio, S., David, O., . . . Foster, B. L.
(2019). iEEG-BIDS, extending the Brain Imaging Data Structure specification to human
intracranial electrophysiology. Scientific Data, 6.

Lee, T.-W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an
extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural
computation, 11(2), 417-441.

Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., & Yger, F.
(2018). A review of classification algorithms for EEG-based brain–computer interfaces: a
10 year update. Journal of neural engineering, 15(3), 031005.

Makeig, S., Jung, T.-P., Bell, A. J., Ghahremani, D., & Sejnowski, T. J. (1997). Blind separation
of auditory event-related brain responses into independent components. Proceedings of
the National Academy of Sciences, 94(20), 10979-10984.

Makeig, S., Kothe, C., Mullen, T., Bigdely-Shamlo, N., Zhang, Z., & Kreutz-Delgado, K. (2012).
Evolving signal processing for brain–computer interfaces. Proceedings of the IEEE,
100(Special Centennial Issue), 1567-1584.

Makeig, S., Westerfield, M., Jung, T. P., Enghoff, S., Townsend, J., Courchesne, E., &
Sejnowski, T. J. (2002). Dynamic brain sources of visual evoked responses. Science,
295(5555), 690-694. doi:10.1126/science.1066168

Martínez-Cancino, R., Heng, J., Delorme, A., Kreutz-Delgado, K., Sotero, R. C., & Makeig, S.
(2019). Measuring transient phase-amplitude coupling using local mutual information.
Neuroimage, 185, 361-378.

Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for
inference of large phylogenetic trees. Paper presented at the 2010 gateway computing
environments workshop (GCE).

Miller, M. A., Schwartz, T., Pickett, B. E., He, S., Klem, E. B., Scheuermann, R. H., . . . O'Leary,
M. A. (2015). A RESTful API for access to phylogenetic tools via the CIPRES science
gateway. Evolutionary Bioinformatics, 11, EBO. S21501.

Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C. R., Jagust, W., . . . Beckett,
L. (2005). Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). Alzheimer's & Dementia, 1(1), 55-66.

Niso, G., Gorgolewski, K. J., Bock, E., Brooks, T. L., Flandin, G., Gramfort, A., . . . Moreau, J. T.
(2018). MEG-BIDS, the brain imaging data structure extended to
magnetoencephalography. Scientific data, 5.

NSG. nsgportal. Retrieved from http://www.nsgportal.org/guide.html
O’Connor, D., Potler, N. V., Kovacs, M., Xu, T., Ai, L., Pellman, J., . . . Ghosh, S. (2017). The

Healthy Brain Network Serial Scanning Initiative: a resource for evaluating inter-
individual differences and their reliabilities across scan conditions and sessions.
Gigascience, 6(2), giw011.

Onton, J., Delorme, A., & Makeig, S. (2005). Frontal midline EEG dynamics during working
memory. Neuroimage, 27(2), 341-356.

39

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: open source software
for advanced analysis of MEG, EEG, and invasive electrophysiological data.
Computational intelligence and neuroscience, 2011, 1.

Pedroni, A., Bahreini, A., & Langer, N. (2019). Automagic: Standardized preprocessing of big
EEG data. Neuroimage.

Pfurtscheller, G., & Da Silva, F. L. (1999). Event-related EEG/MEG synchronization and
desynchronization: basic principles. Clinical neurophysiology, 110(11), 1842-1857.

Ray, S., Deshpande, R., Dudani, N., & Bhalla, U. S. (2008). A general biological simulator: the
multiscale object oriented simulation environment, MOOSE. BMC Neuroscience, 9(1),
P93.

Rekapalli, B., Giblock, P., & Reardon, C. (2013). PoPLAR: portal for petascale lifescience
applications and research. BMC bioinformatics, 14(9), S3.

Schumann, G., Loth, E., Banaschewski, T., Barbot, A., Barker, G., Büchel, C., . . . Gallinat, J.
(2010). The IMAGEN study: reinforcement-related behaviour in normal brain function
and psychopathology. Molecular psychiatry, 15(12), 1128.

Sivagnanam, S., Majumdar, A., Yoshimoto, K., Astakhov, V., Bandrowski, A., Martone, M., &
Carnevale, N. T. (2015). Early experiences in developing and managing the
neuroscience gateway. Concurrency and Computation: Practice and Experience, 27(2),
473-488.

Sivagnanam, S., Majumdar, A., Yoshimoto, K., Astakhov, V., Bandrowski, A., Martone, M. E., &
Carnevale, N. T. (2013). Introducing the Neuroscience Gateway. Paper presented at the
IWSG.

Sivagnanam, S., Yoshimoto, K., Carnevale, N. T., & Majumdar, A. (2018). The Neuroscience
Gateway: Enabling Large Scale Modeling and Data Processing in Neuroscience. Paper
presented at the Proceedings of the Practice and Experience on Advanced Research
Computing.

Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., . . . Landray, M. (2015).
UK biobank: an open access resource for identifying the causes of a wide range of
complex diseases of middle and old age. PLoS medicine, 12(3), e1001779.

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: a user-
friendly application for MEG/EEG analysis. Computational intelligence and
neuroscience, 2011, 8.

Tort, A. B., Komorowski, R., Eichenbaum, H., & Kopell, N. (2010). Measuring phase-amplitude
coupling between neuronal oscillations of different frequencies. Journal of
neurophysiology, 104(2), 1195-1210.

Tournier, J. D., Calamante, F., & Connelly, A. (2012). MRtrix: diffusion tractography in crossing
fiber regions. International journal of imaging systems and technology, 22(1), 53-66.

Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T., Bucholz, R., . . . Curtiss, S.
W. (2012). The Human Connectome Project: a data acquisition perspective.
Neuroimage, 62(4), 2222-2231.

Wakeman, D. G., & Henson, R. N. (2015). A multi-subject, multi-modal human neuroimaging
dataset. Scientific data, 2, 150001.

Wilkins-Diehr, N., Gannon, D., Klimeck, G., Oster, S., & Pamidighantam, S. (2008). TeraGrid
science gateways and their impact on science. Computer, 41(11), 32-41.

Wolters, C. H., Kuhn, M., Anwander, A., & Reitzinger, S. (2002). A parallel algebraic multigrid
solver for finite element method based source localization in the human brain.
Computing and visualization in science, 5(3), 165-177.

40

Appendices

Appendix A.
The code samples below show typical curl calls to the NSG REST API used in nsgportal for:

submitting a job, checking job status, retrieving job results, and deleting a job. Lines in the code

samples have been numbered for tutorial purposes (they are not present in the actual code).

These examples assume the user has been registered in NSG and obtained a valid username

and password, designated as your_username and your_password respectively. The

application key and NSG URL (nsgr.sdsc.edu:8443/cipresrest/v1) are designated as $KEY and

$URL respectively.

A.1 Submitting a job

1 curl -s -u your_username:your_password \

2 -H cipres-appkey:$KEY \

3 $URL/job/your_username \

4 -F tool=EEGLAB_TG \

5 -F input.infile_=@"/data/TestingEEGLABNSG.zip" \

6 -F vparam.filename_=run_ica_nsg.m

7 -F metadata.clientJobId=TestingEEGLABNSG \

8 -F vparam.outputfilename_="nsgresults_TestingEEGLABNSG" \

9 -F vparam.number_nodes_=1 \

Code sample A1

The code sample above (Code sample A1) shows a curl command following NSG REST API

specification for submitting a job to NSG using EEGLAB as a tool (see Line 4). The job zip file is

specified with the parameter input.infile_ in Line 5, and the script to run with the parameter

vparam.filename_ in Line 6. A job ID is indicated with the parameter metadata.clientJobId in

Line 7. Although not compulsory in NSG REST API specifications, in nsgportal the use of a job

ID is mandatory. The rationale for this is to provide meaningful job identifiers to users, rather

than a long job url used in NSG to tag and track jobs. A default job ID assigned in nsgportal is

created by taking the name of the file in input.infile_ and attaching three randomly generated

numbers in its end. This job ID can be modified at the user's convenience. In the same way, in

nsgportal, the name of the output file is assigned a default value created by attaching the prefix

‘nsgresults_' to the value defined in metadata.clientJobId. This value is set in Line 8 of the code

sample above by using the parameter vparam.outputfilename_. Finally, we define the number of

nodes requested for computation with the parameter number_nodes_ in Line 9. At this moment,

41

NSG only allows the selection of one node (currently, of 24 cores) for each EEGLAB job. For

more details on the MATLAB call of the code above, see nsgportal function nsg_run.

A.2 Checking job status

1 curl -s -u your_username:your_password \

2 -H cipres-appkey:$KEY \

3 $URL/job/your_username

Code sample A2

The code above (Code sample A2) allows checking for the status of all jobs under the user

myusername account. The MATLAB call for this code, as well as the one to retrieve job results,

presented next in A.3, are implemented in the ngportal function nsg_jobs.

A.3 Retrieving job results

1 curl -s -u your_username:your_password \

2 -H cipres-appkey:$KEY \

3 $URL/job/your_username/NGBW-JOB-EEGLAB_TG-Unique_job_identifier/output

Code sample A3

The code sample above (Code sample A3) is used to retrieve the job files and results (with job

url :$URL/job/nsgusername/NGBW-JOB-EEGLAB_TG-Unique_job_identifier)

A.4 Deleting a job

1 curl -u your_username:your_password \

2 -H cipres-appkey:$KEY \

3 -X DELETE \ 4$URL/your_username/NGBW-JOB-EEGLAB_TG-

Unique_job_identifier

Code sample A4

The code above (Code sample A4) is used to delete the job specified by the job URL in line 4

from the user’s NSG account. The MATLAB call for this code is implemented in the ngportal

function nsg_delete.

42

Appendix B

A successful NSG job should progress through the following states (NSG):

- QUEUE - The job has been validated and placed in the NSG queue.

- COMMANDRENDERING - The job has reached the head of the queue, and NSG has

created the command line that will run the job on the HPC resource.

- INPUTSTAGING - NSG has created a temporary working directory for the job on the

execution HPC host and copied the input files over.

- SUBMITTED - The job has been submitted to the HPC host.

- LOAD_RESULTS - The job has finished running on the HPC host, and NSG has begun

to transfer the results back.

- COMPLETED - Results have been successfully transferred and are available in the NSG

web portal.

43

Appendix C

The stimuli presented in this experiment comprised two sets of 300 grayscale photographs, half

from known people and half from unknown people. Images of known, unknown and scrambled

faces were presented for random durations between 800 and 1,000 ms following the

appearance of a fixation cross cue with a random duration between 400 and 600 ms. During

the 1,700-ms interstimulus interval, a central white circle was presented. The participant was

told to fixate centrally throughout the experiment and asked to press one of two keys based on

the degree of bilateral symmetry (more or less) of each presented face. EEG data were

recorded synchronously with MEG data using an Elekta Neuromag Vectorview 306 system

(Helsinki, FI). A 70-channel Easycap (easycap.de/wordpress) cap was used to record the EEG

data, with electrode layout conforming to the extended 10–10% system. The EEG electrodes

location was digitized by using a 3-D digitizer (Fastrak Polhemus Inc., Colchester, VA, USA).

Data were acquired at an 1100-Hz sampling rate with a low pass filter applied below 350 Hz and

no high pass filter. The EEG reference electrode was placed on the nose, and the common

ground electrode was placed at the left collar bone. Stimuli were presented during six, 7.5-min

runs. The protocol is described in more detail in Wakeman and Henson, 2015 (Wakeman &

Henson, 2015). Data preprocessing, performed using EEGLAB and custom scripts, written in

MATLAB (The Mathworks, Inc.), proceed through the following steps:

a) Data file from subject sub-11 was downloaded from OpenNeuro at

openneuro.org/crn/datasets/ds000117/snapshots/1.0.3/files/sub-11:ses-meg:meg:sub-

11_ses-meg_task-facerecognition_run-01_meg.fif

b) Raw EEG data and event information were imported using FileIO plug-in for EEGLAB.

The location of the fiducials were added to the channel location and the channel

montage was rotated to match EEGLAB format. Event latencies were corrected by 34

ms as reported by the data authors. Finally, the six sequentially collected task run files

were merged and saved.

c) Downsample data from 1100 Hz to 500 Hz using EEGLAB function pop_resample.

d) High-pass filter the data above 1 Hz (FIR, Hamming windowed, transition bandwidth 1

Hz).

e) Remove line noise (50 Hz) by applying a Hamming-windowed (sinc) FIR notch filters

centered at the line frequency and its harmonics (e.g., 50 Hz, 100 Hz, 150 Hz, and 200

Hz).

44

f) Remove segments in the data containing non-brain artifact (e.g., high-frequency muscle

noise and other irregular artifacts) as identified by visual inspection.

g) Apply common-average reference computation involving all channels

h) Extract data segments time-locked to the presentation of each of the three main events

(known, unknown and scrambled face) and spanning from 1 sec before to 2 sec

following stimulus onsets.

i) Save the dataset in EEGLAB .set format.

Code for the processing described here can be accessed in the GitHub repository7 of supporting

material.

7 https://github.com/sccn/nsgportal_manuscriptsupport/tree/master/wh_data

45

Appendix D

This appendix describes in more detail the elements and section of the nsportal main GUI in

Figure 2

Section A: Interacting with submitted NSG jobs.

This section contains the following components:

(List box) Select job: lists all existing NSG jobs under the user credentials. Font color coding is

used to indicate the job state: completed (Completed, in green), still being processed

(Processing, in blue), returning a MATLAB syntax-related job error (MATLAB error, in red) or

an NSG-related error (NSG error, in orange). For example, in Figure 2, the job named

oep_runica is shown in green, indicating that the job has been completed. Most of the

functionalities accessed in this section of the graphical interface will act on the job selected in

this list.

(Button) Refresh job list: refreshes the list of existing NSG jobs under the user account.

(Checkbox) Auto-refresh job list: flags the interface to update the user NSG jobs status every

thirty seconds. The status of the selected job is shown to the right of ‘NSG job status’ label.

This functionality uses a MATLAB timer object to schedule a sequential update of the status of

the jobs.

(Button) Delete this NSG job: removes the selected job from the user’s NSG account.

(Button) Matlab output log: downloads and displays the accumulated MATLAB command line

output for the selected NSG job.

(Button) Matlab error log: downloads and displays the MATLAB error log for the selected job (if

available).

(Button) Download job results: download the job result .zip file from the currently selected job.

46

(Button) Load/plot results: launch a window controlling the browsing, loading, and displaying of

job results.

Section B: Checking NSG job status.

 This section of the GUI window (beneath ‘NSG job status’) displays the job status and

the messages issued by NSG during the submission and processing of the job currently

selected in the jobs list. The job-status is displayed in capital letters and reflects the current

stage of the job at the time of the last update (see Appendix B for the list of states). These

states, while related to the four color-coded categories in the job list, are mostly referring to

more fundamental NSG processing stages in the selected job.

Section C: Submitting a job to NSG.

 The lower section of the GUI (beneath ‘Submit new NSG job’) is dedicated to

submitting jobs to NSG as well as for performing testing of the jobs in the user's local computer.

In what follows, we describe and explain the functionality of each component.

(Button) Browse and (edit box) Job folder or zip file: This button launches a window to browse

for a .zip file or a folder containing the job to be submitted to NSG (or tested locally). Once the

file/folder is selected, its full path is displayed in (edit box) Job folder or zip file. The value in

the edit box is used in the NSG-R command line option input.infile_ when submitting a job.

(Drop-down menu) Matlab script to execute: Show all the MATLAB script files (.m) in the job

file (.zip file or file folder) selected above. The Matlab script for NSG execution or testing must

be selected here. In the case when a folder is selected, the listing of files is done by scanning

the folder content with the MATLAB function dir. When a .zip file is selected, the listing of the .m

files is done through the nsgportal function listzipcontents.m. This function uses Java objects

and methods native to MATLAB to read the content of the .zip file without unzipping it. Both

options, for folder and .zip files, are implemented in the callback of (button) Browse in

pop_nsg.m. The value in this menu is used in the NSG-R command line option input.filename_

when submitting a job (see examples in Appendix A).

(Button) Test job locally: runs the job indicated by the job file and MATLAB script selected

above on the local computer where nsgportal is being executed. Local testing of the jobs is

intended to be done by using a downscaled version of the job to be submitted. This can be

47

done, e.g., by using a scaled-down script mimicking the main steps to be performed at NSG, but

on a lower scale. Take the example of a job that processes hundreds, say N=200, of subjects in

a for loop, the downscaled version of this job may result from the shortening of the loop from

200 to 2. This button is strategically located to the right of (edit box) Matlab script to execute,

to emphasize the idea that job testing should be done on a different script from the one intended

to run on the HPC resource via NSG.

(Edit box) Job ID (default or custom): displays the unique identifier for the NSG job. The

information in this field is generated automatically when a job folder or .zip file is selected in the

Browse button above. The default value assigned here is created by taking the name of the job

folder or .zip file and attaching three randomly generated numbers at the end. We encourage

users to modify this field for easier recall and reference. The value here is used in the optional

NSG-R command line option input.clientJobId when submitting a job. This option is compulsory

when the job is submitted from nsgportal, since the job ID value is used instead of the long job

URL for job management and tracking in the nsgportal GUI machinery.

(Edit box) NSG run options (see Help): allows the user to specify options for the to be

submitted job. The options defined here are appended to the curl command when the job is

submitted to NSG. Currently, nsgportal includes options for defining the maximum runtime

allocation in NSG (runtime), the number of NSG nodes to use in the computation (nnode)

(currently, 1), and other options (see the pop_nsg and nsg_run help messages). The list of

options will eventually include all NSG-R options.

(Button) Run job on NSG: submits the job to NSG. The button callback calls nsg_run and

passes the inputs provided by the user in the GUI. These inputs are formatted in a curl

command (see the example in Appendix A), before being issued for execution on the local

computer.

(Buttons) Help and Close respectively display the help message of pop_nsg in a browser

window and close the pop_nsg GUI.

48

Inline Supplementary Figures

Inline Supplementary Figure 1

Inline Supplementary Figure 1. Citations of the EEGLAB reference paper vs. other open-source

EEG analysis software reference paper citations as per the Web of Science

(https://www.webofknowledge.com, mid-December 2019).

Inline Supplementary Figure 2

Inline Supplementary Figure 2. The graphical user interface of pop_nsginfo.m. In this window, users

can specify their NSG username, password and other options necessary to format the REST API curl

commands and store their outputs. The values shown in fields ‘NSG key’ and ‘NSG url’ are set to use

EEGLAB by default.

CRediT author statement

Ramón Martínez-Cancino: Conceptualization, Software, Writing, Review & Editing,
Visualization
Arnaud Delorme: Conceptualization, Software, Review & Editing, Supervision, Funding
acquisition

Dung Truong: Software, Writing, Review & Editing
Fiorenzo Artoni: Software, Review & Editing

Kenneth Kreutz-Delgado: Supervision, Review & Editing
Subhashini Sivagnanam: Conceptualization, Software, Review & Editing

Kenneth Yoshimoto: Conceptualization, Software, Review & Editing
Amitava Majumdar: Conceptualization, Software, Review & Editing, Project
administration, Funding acquisition

Scott Makeig: Conceptualization, Software, Writing, Review & Editing, Visualization,
Project administration, Supervision, Funding acquisition

